Ниже рассмотрена конструкция магнитного подвеса Николаева, который утверждал, что можно обеспечить левитацию постоянного магнита без упора. Показан опыт с проверкой работы данной схемы.

Сами неодимовые магниты продаются в этом китайском магазине .

Магнитная левитация без затрат энергии – фантастика или реальность? Можно ли сделать простейший магнитный подшипник? И что же на самом деле показал Николаев в начале 90-х? Давайте рассмотрим эти вопросы. Каждый, кто когда-либо держал в руках пару магнитов, наверняка задавался вопросом: “Почему не получается заставить один магнит парить над другим без посторонней поддержки? Обладая таким уникальным , как постоянное магнитное поле, они отталкиваются одноименными полюсами совершенно без затрат энергии. Это великолепная основа для технического творчества! Но не все так просто.

Еще в 19 веке британский ученый Earnshaw доказал, что используя только постоянные магниты, невозможно устойчиво удерживать левитирующий объект в гравитационном поле. Частичная левитация или, иначе говоря, псевдолевитация, возможна лишь при механической поддержке.

Как сделать магнитный подвес?

Простейший магнитный подвес можно сделать за пару минут. Понадобятся 4 магнита в основании,чтобы сделать опорную базу, и пара магнитов, закрепленных на самом левитирующим объекте, в качестве которого можно взять, например, фломастер. Тем самым мы получили парящую конструкцию с неустойчивым равновесием по обе стороны оси фломастера. Стабилизировать положение поможет обычный механический упор.

Простейший магнитный подвес с упором

Эту конструкцию можно настроить таким образом, чтобы основной вес левитирующего объекта ложился на опорные магниты, а боковая сила упора была настолько мала, что механическое трение там практически стремится к нулю.

Теперь было бы логично попытаться заменить механический упор на магнитный, чтобы добиться абсолютной магнитной левитации. Но, к сожалению, сделать это не получается. Возможно, дело в примитивности конструкции.

Альтернативная конструкция.

Рассмотрим более надежную систему такого подвеса. В качестве статора используются кольцевые магниты, сквозь которые проходит ось вращения подшипника. Оказывается, в определенной точке кольцевые магниты обладают свойством стабилизировать другие магниты вдоль своей оси намагниченности. А в остальном имеем то же самое. Нет устойчивого равновесия вдоль оси вращения. Это и приходится устранять регулируемым упором.

Рассмотрим конструкцию более жесткую.

Возможно здесь удастся стабилизировать ось при помощи упорного магнита. Но и здесь так и не удалось добиться стабилизации. Возможно, упорные магниты нужно размещать с обеих сторон от оси вращения подшипника. В интернете давно обсуждается видео с магнитным подшипником Николаева. Качество изображения не позволяет детально рассмотреть эту конструкцию и складывается впечатление что ему удалось добиться устойчивой левитации исключительно при помощи постоянных магнитов. При этом схема устройства идентична показанной выше. Добавлены лишь второй магнитный упор.

Проверка конструкции Геннадия Николаева.

Сначала посмотрите полное видео, на котором показан магнитный подвес Николаева. Этот ролик заставил сотни энтузиастов в России и за рубежом попытаться сделать конструкцию, которая смогла бы создать левитацию без упора. Но, к сожалению, в настоящее время не создана действующая конструкция такого подвеса. Это заставляет усомниться в модели Николаева.

Для проверки была сделана точно такая-же конструкция. Кроме всех дополнений были поставлены такие же, как у Николаева, ферритовые магниты. Они слабее неодимовых и не выталкивают с такой огромной силой. Но проверка в серии экспериментов принесла только разочарование. К сожалению, и эта схема оказалась нестабильной.

Заключение.

Проблема в том что кольцевые магниты, какими бы сильными они не были, не в состоянии удержать ось подшипников в равновесии при том усилии со стороны боковых упорных магнитов, которое нужно для ее боковой стабилизации. Ось просто соскальзывают в сторону при малейшем движении. Другими словами, сила, с которой кольцевые магниты стабилизируют ось внутри себя, всегда будет меньше силы, необходимой для стабилизации оси в боковом направлении.

Так что же все-таки показал Николаев? Если более внимательно посмотреть это видео, то возникает подозрение, что при плохом качестве видео просто не видно игольчатый упор. Случайно ли Николаев не старается демонстрировать самое интересное? Не отвергается сама возможность абсолютной левитация на постоянных магнитах, закон сохранения энергии здесь не нарушается. Возможно, еще не создали такую форму магнита, которая создаст необходимую потенциальную яму, надежно удерживающую связку других магнитов в устойчивом равновесии.

Далее схема магнитного подвеса


Чертеж магнитного подвеса на постоянных магнитах

Говоря о магнитных подшипниках или бесконтактных подвесах, нельзя не отметить их замечательные качества: не нужна смазка, отсутствуют трущиеся части, следовательно нет потерь на трение, крайне низкий уровень вибрации, высокая относительная скорость, малое энергопотребление, система автоматического контроля и мониторинга состояния подшипников, возможность герметизации.

Все эти достоинства делают магнитные подшипники лучшими решениями для множества применений: для газовых турбин, для криогенной техники, в высокооборотных электрогенераторах, для вакуумных устройств, для различных станков и прочего оборудования, в том числе высокоточного и высокоскоростного (порядка 100000 оборотов в минуту), где важно отсутствие механических потерь, помех и погрешностей.

Принципиально магнитные подшипники подразделяются на два типа: пассивные и активные магнитные подшипники. Пассивные магнитные подшипники изготавливаются , но такой подход далеко не идеален, поэтому используется он крайне редко. Более гибкие и широкие технические возможности открываются с подшипниками активными, в которых магнитное поле создается переменными токами в обмотках сердечников.

Как работает бесконтактный магнитный подшипник

Работа активного магнитного подвеса или подшипника базируется на принципе электромагнитной левитации - левитации с использованием электрического и магнитного полей. Здесь вращение вала в подшипнике происходит без физического контакта поверхностей друг с другом. Именно по этой причине полностью исключается смазка, а механический износ тем не менее отсутствует. Так повышаются надежность и КПД машин.

Специалисты также отмечают важность наличия контроля положения вала ротора. Система датчиков непрерывно следит за положением вала и подает сигналы системе автоматического управления для точного позиционирования путем корректировки позиционирующего магнитного поля статора, - сила притяжения с нужной стороны вала делается сильнее или слабее путем регулировки тока в статорных обмотках активных подшипников.


Два конических активных подшипника либо два радиальных и один осевой активные подшипники - позволяют бесконтактно подвесить ротор буквально в воздухе. Система управления подвесом работает непрерывно, она может быть цифровой или аналоговой. Так обеспечивается высокая прочность удержания, высокая грузоподъемность, и регулируемые жесткость и амортизация. Данная технология позволяет подшипникам работать в условиях низких и высоких температур, в вакууме, на больших скоростях и в условиях повышенных требований к стерильности.

Из вышеизложенного ясно, что основными частями системы активного магнитного подвеса являются: магнитный подшипник и автоматическая система электронного управления. Электромагниты все время действуют на ротор с разных сторон, и действие их подчинено электронной системе контроля.


Ротор радиального магнитного подшипника оснащен ферромагнитными пластинами, на которые и действует удерживающее магнитное поле от катушек статора, в результате чего ротор оказывается подвешен в центре статора, не соприкасаясь с ним. Индуктивные датчики все время следят за положением ротора. Любое отклонение от правильного положения приводит к появлению сигнала, который подается на контроллер, чтобы тот в свою очередь вернул ротор в нужное положение. Радиальный зазор может составлять от 0,5 до 1 мм.

Аналогичным образом функционирует упорный магнитный подшипник. Электромагниты в форме кольца закреплены на валу упорного диска. Электромагниты располагаются на статоре. На концах вала располагаются осевые датчики.

Для надежного удержания ротора машины во время ее остановки или в момент отказа системы удержания, используются страховочные шариковые подшипники, которые закреплены так, что зазор между ними и валом выставлен равным половине того, что имеет место в магнитном подшипнике.


Система автоматического регулирования располагается в шкафу, и отвечает за правильную модуляцию тока, проходящего по электромагнитам, в соответствии с сигналами от датчиков положения ротора. Мощность усилителей связана с максимальной силой электромагнитов, величиной воздушного зазора и временем реакции системы на изменение положения ротора.

Возможности бесконтактных магнитных подшипников

Максимально возможная скорость вращения ротора в радиальном магнитном подшипнике ограничена лишь способностью ферромагнитных пластин ротора сопротивляться центробежной силе. Обычно предел окружной скорости составляет 200 м/с, в то время как для осевых магнитных подшипников предел ограничен стойкостью литой стали упора - 350 м/с с обычными материалами.

От применяемых ферромагнетиков зависит и максимальная нагрузка, которую способен выдержать подшипник соответствующего диаметра и длины статора подшипника. Для стандартных материалов максимальное давление - 0,9 Н/см2, что меньше чем у обычных контактных подшипников, однако проигрыш в нагрузке может быть компенсирован высокой окружной скоростью при увеличенном диаметре вала.

Энергопотребление активного магнитного подшипника не очень велико. Наибольшие потери в подшипнике приходятся на вихревые токи, но это в десятки раз меньше чем та энергия, которая растрачивается при использовании в машинах обычных подшипников. Муфты, термоизоляционные барьеры и другие устройства исключаются, подшипники эффективно работают в условиях вакуума, гелия, кислорода, морской воды и т. д. Диапазон температур составляет от -253°С до +450°С.

Относительные недостатки магнитных подшипников

Между тем, есть у магнитных подшипников и недостатки.

В первую очередь - необходимость применять вспомогательные страховочные подшипники качения, которые выдерживают максимум два отказа, после чего их нужно менять на новые.

Во-вторых, сложность системы автоматического управления, которая при выходе из строя потребует сложного ремонта.

В-третьих, температура обмотки статора подшипника при высоких токах повышается - обмотки греются, и им нужно персональное охлаждение, лучше если жидкостное.

Наконец, материалоемкость бесконтактного подшипника оказывается высокой, потому что площадь несущей поверхности для поддержания достаточной магнитной силы должна быть обширной - сердечник статора подшипника получается большим и тяжелым. Плюс явление магнитного насыщения.

Но, несмотря на кажущиеся недостатки, магнитные подшипники уже достаточно широко применяются, в том числе в оптических системах высокой точности и в лазерных установках. Так или иначе, начиная с середины прошлого века магнитные подшипники все время совершенствуются.

Внимание!!!

У вас отключены JavaScript и Cookies!

Для полноценной работы сайта Вам необходимо включить их!

Активные магнитные подшипники

Активные магнитные подшипники (АМП)
(производство компании «S2M Société de Mécanique Magnétique SA», 2, rue des Champs, F-27950 St.Marcel, Франция)

Основные области применения активных магнитных подшипников - в составе турбомашин. Концепция отсутствия масла в компрессорах и турбодетандерах позволяет достичь высочайшей надежности также и за счет отсутствия износа узлов машины.

Активные магнитные подшипники (АМП) находят все большее применение во многих отраслях промышленности. Для улучшения динамических характеристик, увеличения надежности и КПД применяются бесконтактные активные магнитные подшипники.

Принцип действия магнитных подшипников основывается на эффекте левитации в магнитном поле. Вал в таких подшипниках в прямом смысле слова висит в мощном магнитном поле. Система датчиков постоянно отслеживает положение вала, и подает сигналы на позиционные магниты статора, корректируя силу притяжения с той или иной стороны.


1 . Общее описание системы АМП

Активный магнитный подвес состоит из 2-х отдельных частей:

Подшипник;

Электронная система управления

Магнитный подвес состоит из электромагнитов (силовых катушек 1 и 3), притягивающих ротор (2).

Компоненты АМП

1. Радиальный подшипник

Ротор радиального подшипника, оснащенный ферромагнитными пластинами, удерживается магнитными полями, создаваемыми электромагнитами, расположенными на статоре.

Ротор переводится в подвешенное состояниев центре, не соприкасаясь со статором. Положение ротора контролируется индуктивными датчиками. Они обнаруживают любое отклонение относительно номинального положения и подают сигналы, которые управляют током в электромагнитах для возвращения ротора в его номинальное положение.

4 катушки, размещенные по осям V и W , и смещенные под углом 45° от осей X и Y , удерживают ротор в центре статора. Нет контакта между ротором и статором. Радиальный зазор 0,5-1мм; осевой зазор 0,6-1,8 мм.

2. Упорный подшипник

Упорный подшипник работает по такому же принципу. Электромагниты в форме несъемного кольца располагаются по обеим сторонам смонтированного на валу упорного диска. Электромагниты закрепляются на статоре. Упорный диск насаживается на ротор (например, методом горячей посадки). Осевые датчики положения, как правило, расположены на концах вала.


3. Вспомогательные (страховочные)

подшипники

Вспомогательные подшипники используются для поддерживания ротора во время остановки машины и в случае отказа системы управления АМП. В нормальном рабочем режиме данные подшипники остаются в неподвижном состоянии. Расстояние между вспомогательными подшипниками и ротором, как правило, равно половине воздушного зазора, однако, при необходимости, оно может быть уменьшено. Вспомогательные подшипники это, главным образом, шариковые подшипники с твердой смазкой, но могут использоваться и другие типы подшипников, такие, как подшипники скольжения.

4. Электронная система управления


Электронная система управления контролирует положение ротора, модулируя ток, который проходит по электромагнитам в зависимости от значений сигнала датчиков положения.

5. Электронная система обработки сигналов

Сигнал, посылаемый датчиком положения, сравнивается с эталонным сигналом, который соответствует номинальному положению ротора. Если эталонный сигнал равен нулю, номинальное положение соответствует центру статора. При изменении эталонного сигнала можно переместить номинальное положение на половину воздушного зазора. Сигнал отклонения пропорционален разнице между номинальным положением и положением ротора в данный момент. Этот сигнал передается на процессор, который в свою очередь направляет корректирующий сигнал на усилитель мощности.

Отношение выходного сигнала к сигналу отклонения определяется передаточной функцией. Передаточная функция выбирается для поддержания ротора с максимальной точностью в его номинальном положении и для его быстрого и гладкого возвращения в данное положение в случае помех. Передаточная функция определяет жесткость и амортизацию магнитного подвеса.

6. Усилитель мощности

Данное устройство поставляет на электромагниты подшипников ток, необходимый для создания магнитного поля, которое воздействует на ротор. Мощность усилителей зависит от максимальной силы электромагнита, воздушного зазора и времени реакции системы автоматического управления (т.е. скорости, при которой эта сила должна быть изменена, когда она сталкивается с помехой). Физические размеры электронной системы не имеют прямой связи с весом ротора машины, они, скорее всего, связаны отношением показателя между величиной помехи и весом ротора. Следовательно, небольшая оболочка будет достаточной для большого механизма, оснащенного относительно тяжелым ротором, подвергаемым небольшим помехам. В то же время механизм, подверженный бóльшим помехам, должен быть оснащен большим электрошкафом.

2. Некоторые характеристики АМП

Воздушный зазор

Воздушный зазор - это пространство между ротором и статором. Величина зазора, обозначаемая е , зависит от диаметра D ротора или подшипника.

Как правило, обычно используют следующие значения:

D (мм)

е (мм)

< 100

0,3 - 0,6

100 - 1 000

0,6 - 1,0

Скорость вращения

Максимальная скорость вращения радиального магнитного подшипника зависит только от характеристики электромагнитных пластин ротора, а именно сопротивления пластин центробежной силе. При использовании стандартных пластин можно достичь значений окружной скорости до 200 м/с. Скорость вращения же осевого магнитного подшипника ограничена сопротивлением литой стали упорного диска. Окружная скорость в 350 м/с может быть достигнута при использовании стандартного оборудования.

Нагрузка АМП зависит от используемого ферромагнитного материала, диаметра ротора и продольной длины статора подвеса. Максимальная удельная нагрузка АМП, изготовленного из стандартного материала, составляет 0,9 Н/см². Эта максимальная нагрузка является меньшей по сравнению с соответствующими значениями классических подшипников, однако, высокая допускаемая окружная скорость позволяет увеличивать диаметр вала так, чтобы получить максимально большую поверхность контакта и, следовательно, такой же предел нагрузки, как и для классического подшипника без необходимости увеличения его длины.

Потребление энергии

Активные магнитные подшипники имеют очень незначительный расход энергии. Данный расход энергии происходит от потерь на гистерезис, вихревые токи (токи Фуко) в подшипнике (мощность, которая взята на валу) и теплопотерь в электронной оболочке. АМП потребляют в 10-100 раз меньше энергии, чем классические для механизмов сопоставимых размеров. Потребление энергии электронной системой управления, для которой необходим внешний источник тока, также является очень низким. Аккумуляторы используются для поддержания рабочего состояния подвеса в случае отказа сети - в этом случае они включаются автоматически.

Окружающие условия

АМП могут устанавливаться непосредственно в среде эксплуатации, полностью исключая необходимость соответствующих муфт и устройств, а также барьеров для термоизоляции. На сегодняшний день активные магнитные подшипники работают в самых разнообразных условиях: вакуум, воздух, гелий, углеводород, кислород, морская вода и гексафторид урания, а также при температурах от - 253 ° С до + 450 ° С.

3. Преимущества магнитных подшипников

  • Безконтактные / безжидкостные
    - отсутствие механического трения
    - отсутствие масла
    - повышение периферийной скорости
  • Повышение надежности
    - эксплуатационная надежность шкафа управления > 52 000 ч.
    - эксплуатационная надежность ЭМ подшипников > 200 000 ч.
    - почти полное отсутствие профилактического обслуживания
  • Меньшие размеры турбомашины
    - отсутствие системы смазки
    - меньшие размеры (P = K*L*D²*N)
    - меньший вес
  • Мониторинг
    - нагрузка подшипников
    - нагрузка турбомашины
  • Регулируемые параметры
    - активная система управления магнитными подшипниками
    - жесткость (меняется в зависимости от динамики ротора)
    - демпфирование (меняется в зависимости от динамики ротора)
  • Работа без уплотнений (компрессор и привод в едином корпусе)
    - подшипники в технологическом газе
    - широкий диапазон рабочих температур
    - оптимизация динамики ротора за счет его укорачивания

Неоспоримым преимуществом магнитных подшипников является полное отсутствие трущихся поверхностей, а, следовательно, износа, трения, а главное отсутствие вылета из рабочей зоны частиц, образующихся в процессе работы обычных подшипников.

Активные магнитные подшипники отличает высокая грузоподъемность и механическая прочность. Их можно использовать при высоких скоростях вращения, а также в безвоздушном пространстве и при различных температурах.

Материалы предоставлены компанией “S2M”, Франция ( www.s2m.fr).

Использование: для поддержания и центрирования ротора устройства, например компрессора, нагнетателя и т. д. Сущность изобретения: магнитный подвес ротора устройства содержит размещенные в цилиндрическом корпусе радиальную и аксиальную электромагнитные опоры, блоки аксиальных и радиальных датчиков положения ротора, закрепленный на корпусе съемный фланец для фиксации осевого положения страховочного подшипника, смонтированного внутри фланца. Аксиальная опора выполнена в виде двух статоров с обмотками управления, один из которых закреплен на внутренней стенке корпуса, а другой - на устройстве, и ротора, сделанного в виде диска, установленного между ними с зазором. Радиальная опора выполнена в виде коаксиально установленных статора, закрепленного на корпусе, и ротора, установленного на роторе устройства. Одна часть датчиков радиального и аксиального положения ротора устройства установлена на общем элементе, закрепленном на внутренней стенке корпуса, а взаимодействующая с ними другая их часть установлена также на общем элементе, выполненном в виде втулки с буртом, расположенной на роторе устройства. Фланец сделан со сквозными отверстиями для доступа к датчикам положения при их регулировке.Такая конструкция подвеса позволяет осуществить его быструю разборку и сборку для замены вышедших из строя элементов, а также необходимую регулировку без его разборки. 1 ил.

Изобретение относится к машиностроению, в частности к магнитным подвесам, применяемым в различных высокооборотных электромеханических системах, и может найти применение в приборных гироскопах, насосах и т.д. Известен магнитный подвес ротора электрошпинделя В общем корпусе электрошпинделя с крышками с двух сторон вместе с приводным высокооборотным двигателем размещен магнитный подвес, состоящий из двух магнитных опор. Первая магнитная опора, расположенная со стороны вала, на котором закреплен шлифованный диск, включает страховочный подшипник, запрессованный на внутреннем диаметре крышки электрошпинделя, расположенные внутри корпуса статор блока датчиков радиального положения ротора и статор радиального электромагнита с обмотками управления. Ротор первой магнитной опоры включает вал электрошпинделя, на который напрессованы ротор блока датчиков радиального положения ротора, ротор радиального электромагнита. Вторая магнитная опора, расположенная на противоположном конце вала, включает начиная со стороны второй крышки корпуса электрошпинделя, страховочный подшипник, запрессованный на внутренней поверхности крышки электрошпинделя, расположенные внутри корпуса статоры двух осевых электромагнитов П-образного типа с обмотками управления, осевые датчики положения ротора, закрепленные на внутренней поверхности статоров осевых электромагнитов, статор блока датчиков радиального положения ротора, статор радиального электромагнита с обмотками управления. Ротор второй магнитной опоры включает вал электрошпинделя, на который напрессованы цилиндрический диск (ротор) осевых электромагнитов, расположенный между двумя статорами осевых электромагнитов, ротор датчиков радиального положения, ротор радиального электромагнита, причем ротором датчиков осевого положения является цилиндрический диск осевых электромагнитов. В средней части корпуса электрошпинделя на его внутренней поверхности запрессован статор высокооборотного двигателя с обмоткой управления, а на средней части вала электрошпинделя расположен напрессованный ротор двигателя. Такое расположение всех узлов электрошпинделя в едином корпусе усложняет их замену, связанную с разборкой рабочей машины. Известен магнитный подвес для газоперекачивающего агрегата состоящий из цилиндрического корпуса с крышкой, на внутренней поверхности которого, начиная с крышки корпуса, установлен фланец с запрессованными в него двумя страховочными подшипниками; два статора осевых цилиндрических электромагнитов Ш-образного типа с обмотками управления; статор блока датчиков радиального положения ротора; статор радиального электромагнита с обмотками управления. К фланцу магнитного подвеса со стороны крышки прикреплен цилиндр с буртиком, в котором расположены датчики осевого положения ротора, причем рабочие поверхности датчиков перпендикулярны оси вала. Статор блока датчиков радиального положения ротора так же как и статор радиального электромагнита установлены с натягом в корпусе магнитного подвеса. Ротор магнитного подвеса включает вал, на котором, начиная с его конца, последовательно расположены ротор осевых датчиков положения, втулка страховочных подшипников, диск (ротор) осевых электромагнитов, ротор блока датчиков радиального положения ротора и ротор радиального электромагнита. В данном магнитном подвесе ротором для датчиков осевого положения является втулка, установленная на конце вала, а ротор радиальных датчиков положения и радиального электромагнита выполнены в общем цилиндре. Диск (ротор) осевых электромагнитов установлены с натягом на втулке, неподвижной относительно вала. Для исключения осевого смещения детали ротора фиксируются на конце вала стопорной шайбой и гайкой. Втулка страховочных подшипников исключает касание статорных и роторных частей магнитного подвеса при его отключении. Однако при выходе из строя осевого электромагнита, расположенного за диском, или датчиков радиального положения ротора и осевого датчика, расположенного за диском, или радиального электромагнита для их замены, или замены всего корпуса магнитного подвеса необходимо снятие осевого диска, установленного с натягом на валу, что значительно усложняет быструю разборку подвеса. Сборка же этих магнитных подвесов после замены вышедших из строя узлов также сопряжена с рядом трудностей: для повторной посадки диска на вал требуется механическая обработка как вала, так и поверхностей посадки диска, что увеличивает время сборки, а в машинах, таких как, например, газоперекачивающие агрегаты или конвейеры заводов, в которых установлены электрошпиндели, остановка их допустима лишь на короткое время. Кроме этого, при повторной установке диска он своей активной поверхностью устанавливается несоосно относительно активных поверхностей осевых электромагнитов, что приводит к ухудшению технических характеристик осевой опоры магнитного подвеса. Иногда при снятии диска с вала происходит повреждение его активной поверхности, что требует его замены и усложняет ввод в эксплуатацию магнитного подвеса. В приведенных магнитных подвесах отсутствует возможность механического регулирования радиальных датчиков положения ротора, так как при установке его на работающей машине они расположены вне зоны доступа. Задачей изобретения является возможность быстрой полной замены корпуса магнитного подвеса без разборки ротора; быстрой частичной замены вышедших из строя узлов магнитного подвеса, расположенных в цилиндрическом корпусе, без разборки ротора; механической регулировки датчиков положения ротора. Поставленная задача решается тем, что в магнитном подвесе ротора устройства, содержащего размещенные в цилиндрическом корпусе радиальную и аксиальную электромагнитные опоры, блоки аксиальных и радиальных датчиков положения ротора, закрепленный на корпусе съемный фланец, страховочный подшипник, причем статоры радиальной опоры и первый статор аксиальной опоры, содержащей ротор дискообразной формы, расположенный между ее первым и вторым статорами, установлены вместе с обмотками управления на внутренней стенке цилиндрического корпуса, отличающийся тем, что статоры и ротор аксиальной опоры расположены со стороны соединения цилиндрического корпуса с корпусом устройства, так что второй ее статор закреплен на последнем, аксиальные и радиальные датчики положения ротора расположены со стороны фланца в зоне соединения последнего с цилиндрическим корпусом, причем одна часть аксиальных и радиальных датчиков положения установлена с возможностью регулировки на общем элементе, закрепленном на внутренней стенке цилиндрического корпуса, и другая их часть установлена также на общем элементе, выполненном в виде втулки с буртом, закрепленной на роторе устройства, а фланец выполнен со сквозными отверстиями и съемной крышкой, фиксирующей страховочный подшипник, смонтированный внутри фланца на роторе устройства. На чертеже изображен предлагаемый магнитный подвес ротора устройства. Он содержит цилиндрический корпус 1, который съемно крепят на корпусе изделия. На торцовой поверхности корпуса, противоположной поверхности крепления к изделию, установлен фланец с буртиком (торцом) 2, выполненный в виде двух половин с поверхностью разъема по диаметру, со сквозными отверстиями для доступа к статору блока датчиков. К фланцу со стороны, противоположной соединению его с корпусом подвеса, крепится крышка страховочного подшипника 3, удерживающая ротор от осевых перемещений. Внутри корпуса последовательно установлены общий элемент 4, на котором расположена регулируемая часть датчиков радиального и осевого положения ротора, статор радиального электромагнита с обмотками 5 управления, упираемый в буртик цилиндра магнитного подвеса и фиксированный от осевых перемещений стопорным кольцом 6, статор одного из осевых электромагнитов 7, обращенный активной поверхностью к корпусу изделия. Статор второго осевого электромагнита 8 закреплен через немагнитную прокладку 9 на корпусе изделия и обращен активной поверхностью в противоположную от него сторону. Ротор магнитного подвеса содержит часть вала устройства 10, на котором последовательно установлены с натягом страховочный подшипник 11, упираемый в буртик вала и фиксированный гайкой 12, ответную часть осевых и радиальных датчиков 13 положения, установленную на общем элементе, выполненном в виде втулки с буртом, закрепленном на роторе устройства, упираемую в буртик вала и фиксированную от осевых перемещений стопорным кольцом 14, втулка 15 с запрессованным в нее ротором радиального электромагнита 16, упираемую в буртик вала и фиксированную в осевом направлении кольцом 17, переходную втулку 18, прижимающую диск (ротор) осевого электромагнита 19, посаженного с натягом на вал, упираемый в буртик вала, и расположенный между двумя статорами осевого электромагнита. Работа магнитного подвеса ротора устройства осуществляется следующим образом. В начальный момент времени (ротор лежит на страховочных подшипниках) необходимо осуществить подвес ротора в центральное положение. Для этого от электронного блока на обмотки управления радиального электромагнита 5 подается такое напряжение питания, которое удерживает ротор в центральном положении, причем работают те обмотки управления, которые создают электромагнитную силу, направленную в противоположную сторону действия веса ротора. При отклонении ротора от центрального положения по сигналам от радиальных датчиков положения, электронный блок вырабатывает такое напряжение питания, подаваемое на обмотки радиальных электромагнитов, которое необходимо для того, чтобы вернуть ротор в центральное положение. По осевому направлению магнитный подвес работает аналогично радиальному, т.е. при смещении ротора в осевом направлении электронный блок по сигналам от осевых датчиков положения вырабатывает такое напряжение питания, подаваемое на обмотки осевых электромагнитов (7 и 8), которое необходимо для возвращения ротора в центральное положение. При центральном положении ротора и действии нагрузки (как в осевом, так и в радиальном направлении) электронный блок вырабатывает такое напряжение питания, подаваемое на обмотки электромагнитов, которое пропорционально величине нагрузки для удержания ротора в центральном положении. При работе такого магнитного подвеса наибольшим отказом подвержены его токоведущие узлы, расположенные в корпусе: радиальные и осевые электромагниты, а также датчики положения ротора, у которых из строя выходят обмотки. Это связано с тем, что через обмотки управления электромагнитов в длительном режиме эксплуатации протекают большие токи, обусловленные значительными нагрузками, воспринимаемыми электромагнитами при работе, например, шпинделей с большим усилием прижатия при шлифовании или в газоперекачивающих агрегатах с высоким давлением (напором) перекачивающего газа. В этих условиях происходит нарушение изоляции токоведущих узлов и выход их из строя, что требует частой их замены. Для быстрого устранения неисправностей токоведущих узлов магнитного подвеса производят замену корпуса 1, внутри которого находятся элемент 4, содержащий одну из частей регулируемых датчиков радиального и осевого положения ротора статор радиального электромагнита с обмотками управления 5, статор осевого электромагнита 7, после снятия крышки страховочного подшипника 3 и фланца 2. Для частичной замены вышедших из строя токоведущих узлов, расположенных в корпусе, в частности датчиков положения ротора, статора радиального электромагнита снимают крышку страховочного подшипника 3, разборный фланец 2. Если вышел из строя элемент с датчиками 4, его снимают и заменяют в нем датчик на новый, если вышел из строя статор радиального электромагнита с обмотками управления 5, то после снятия фланца 2 и элемента с датчиками 4 снимают стопорное кольцо 6 и статор радиального электромагнита 5 заменяют на новый. При выходе из строя осевого электромагнита 7, расположенного на корпусе магнитного подвеса, сначала снимают крышку страховочного подшипника 3 и фланец 2, затем отсоединяют корпус магнитного подвеса от корпуса изделия. Производят замену вышедшего из строя статора электромагнита 7 в корпусе магнитного подвеса 1, который снова крепят к корпусу изделия. Таким образом, расположение двух статоров осевых электромагнитов с обмотками управления и диском (ротором) в цилиндрическом корпусе магнитного подвеса со стороны соединения его с корпусом изделия позволяет осуществить быструю полную замену корпуса магнитного подвеса, быструю частичную замену вышедших из строя узлов магнитного подвеса, расположенных в его корпусе, без разборки ротора, а расположение датчиков положения ротора в непосредственной близости от фланца и прямой доступ к ним через сквозные отверстия этого фланца дает возможность механической регулировки этих датчиков положения ротора.

Формула изобретения

МАГНИТНЫЙ ПОДВЕС РОТОРА УСТРОЙСТВА, содержащий размещенные в цилиндрическом корпусе радиальную и аксиальную электромагнитные опоры, блоки аксиальных и радиальных датчиков положения ротора, закрепленный на корпусе съемный фланец, страховочный подшипник, причем статор радиальной опоры и первый статор аксиальной опоры, содержащей ротор дискообразной формы, расположенный между ее первым и вторым статорами, установлены вместе с обмотками управления на внутренней стенке цилиндрического корпуса, отличающийся тем, что статоры и ротор аксиальной опоры расположены со стороны соединения цилиндрического корпуса с корпусом устройства, так что второй ее статор закреплен на последнем, аксиальные и радиальные датчики положения ротора расположены со стороны фланца в зоне соединения последнего с цилиндрическим корпусом, причем одна часть аксиальных и радиальных датчиков положения установлена с возможностью регулировки на общем элементе, закрепленном на внутренней стенке цилиндрического корпуса, а другая их часть установлена также на общем элементе, выполненном в виде втулки с буртом, закрепленной на роторе устройства, а фланец выполнен со сквозными отверстиями и съемной крышкой, фиксирующей страховочный подшипник, смонтированный внутри фланца на роторе устройства.

насмотревшись видео отдельных товарищей, типа таких

решил и я отметится в этой теме. на мой взгляд видео довольно безграмотное, так что вполне можно по-свистеть из партера.

перебрав в голове кучу схем, посмотрев принцип подвеса в центральной части в видео Белецкого, поняв как работает игрушка "левитрнон", пришел к простой схеме. понятно, что опорных шипа должно быть два на одной оси, сам шип выполнен из стали, а кольца жестко на оси зафиксированны. вместо цельных колец вполне можно уложить не очень большие магниты в форме призмы или цилиндра расположенные по окружности. принцип такойже как в известной игрушке "ливитрон". только вместо героскопического момента, который не дает волчку опрокинутся мы используем "распор" между жестко закрепленными на оси подставками.

ниже видео с игрушкой "ливитрон"

а здесь схема которую предлагаю я. по сути это и есть игрушка на видео выше, но как я уже говорил, ей необходимо что-то что не довало бы опорному шипу опрокинутся. в видео выше используется гироскопический момент, я использую две подставки и распор между ними.

попробуем обосновать работу это конструкции, как я её вижу:

магниты отатлкиваются, значит слабое место - нужно стабилизировать эти шипы по оси. здесь я использовал такую идею: магнит пытается вытолкнуть шип в зону с наименьшей напряженностью поля, т.к. шип имеет противоположную кольцу намагниченость и сам магнит кольцевой, где в достаточно большой области, расположенной вдоль оси, напряженность меньше чем на переферии. т.е. распределение напряженности магнитного поля по-форме напомянает стакан - в стенке напряженность максимальна, а на оси минимальна.

шип должен стабилизироваться по оси, с одновременным выталкиванием из кольцевого магнита в зону с наименьшей напряженностью поля. т.е. если таких шипа два на одной оси и кольцевые магниты жестко зафиксированны - ось должна "зависнуть".

получается, что находится в зоне с меньшей напряженностью поля наиболее энергетически выгодно.

порывшись еще в интернете нашел похожую конструкцию:

здесь тоже формируется зона с меньшей напряженностью, находится она тоже по оси между магнитами, так же используется угол. в общем идеалогия очень похожая, однако если говрить о компактном подшипнике - вариант выше выглядит лучше, однако требует магнитов специальной формы. т.е. разница между схемами в том, что я выдавливаю в зону с меньшей напряженностью опорную часть, а в схеме выше само формирование такой зоны обеспечивает положение на оси.
для наглядности сравнения я перерисовал свою схему:

по сути они зеркальны. вообще идея не нова - все они крутятся вокруг одного и того же, у меня даже есть подозрения, что автор ролика выше просто не искакал предполагаемых решений

здесь практически один в один, если конические упоры сделать не цельным, а составными - магнитопровод + кольцевой магнит, то получится моя схема. я бы даже сказал начальная неоптимизированная идея - рисунок ниже. только рисунок выше работает на "притяжение" ротора, а я изначально планировал "отталкивание"


для особо одаренных хочу заметить, данный подвес не нарушает теоремы (запрет) Ирншоу. дело в том что речь идет здесь не о чисто магнитном подвесе, без жесткой фиксации центров на оси т.е. одна ось жестко зафиксирована, ничего работать не будет. т.е. речь идет о выборе точки опоры и не более того.

на всамом деле, если посмотреть видео Белецкого, то там видно, что примерно такая конфигурация полей уже используется где не поподя, не хватает только финального штриха. конический магнитопровод распределяет "отталкивание" по двум осям, третью же ось Ирншоу велел зафиксировать иначе, я не стал спорить и жестко её зафиксировал механически. почему Белецкий не попробывал такой вариант я не знаю. фактически ему нужно два "ливитрона" - подставки зафиксировать на оси, а на волчки соединить медной трубкой.

еще можно заметить, что можно использовать наконечники из любого дастаточно сильного диамегнетика в место магнита полярности противоположной магнитному опорному кольцу. т.е. заменить связку магнит+конический магнитопровод, просто на конус из диамагнетика. фиксация на оси будет более надежной, но диамагнетики не отличаются сильным взаимодействием и нужны большие напряженности поля и большой "объем" этого поля, чтобы применять это хоть как-то. за счет того что поле аксильно равномерное относительно оси вращения, изменения магнитного поля происходить при вращении не будет т.е. подобный подшипник не создаёт противодействия вращению.

по логике вещей такой принцип должен быть применим и для подвески плазмы - пропатченная "магнитная бутылка" (пробкотрон), что же поживем - увидем.

почему я так уверен в результате? ну потому что его не может не быть:) единственно что возможно придется сделать магнитопроводы в форме конуса и чашки для более "жесткой" конфигурации поля.
ну и такжк можно найти видео с подобным подвесом:



здесь автор не использует каких-либо магнитопроводов и использует упор на иглу, как в общем-то и нужно, понимая теорему Ирншоу. но ведь кольца уже жестко закреплены на оси, значит можно распереть ось между ними, чего лего добится используя конические магнитопроводы на магнитах на оси. т.е. пока не пробили "дно" "магнитного стакана" магнитопровод все труднее впихнуть в кольцо т.к. магнитная проницаемость воздуха меньше чем магнитопровода - уменьшение воздушной прослойки приведет к возрастанию напряженности поля. т.е. одна ось жестко закреплена механически - тогда опор на иглу будет не нужен. т.е. см. самый первый рисунок.

P.S.
вот чего нашел. из сери дурная голова рукам покая не дает - автор тот еще белецкий - накручено там мама не горюй - конфигурация поля довольно сложная, более того не однородная по оси вращения т.е. при вращении буде изменение пока магнитной индукции в оси со всеми вытикающими... обратите внимание на шарик в кольцевом магните, с другой же стороны в кольцевом магните цилиндр. т.е. человек тупо испохабил принцип подвеса описанный здесь.

ну или пропаичил подвес на фотографии т.е. перцы на фото используют опор на иглу, а он в место иглы повесил шарик - ай шайтан - сработало - кто бы мог подумать (помню мне доказывали что я не правильно понимаю теорему Ирншоу), однако ума повесить два шарика и использовать всего два кольца видимо не хватает. т.е. количество магнитов в устройстве на видео можно легко сократить до 4-х, а возможно до 3-х т.е. конфигурацию с цилиндром в одном кольце и шариком в другом можно считать экспериментально доказаной работающей см. рисунок изначальной идеи. там я использовал два симитричных упора и цилинд + конус, хотя считаю что конус что часть сферы от полюса до диаметра работают одинакого.

стало быть сам упор выглядит так - это магнитопровод (т.е железный, никелевый и т.п.)в него просто

закладывается магнит-кольцо. ответнаая часть такая же, только наоборот:) и работают два упора в распоре- товарищ Ирншоу запретил рабоать по одному упору.