1 . Составляется молекулярное уравнение реакции . Формулы веществ записываются в соответствии с правилом валентности. Рассчитываются (если необходимо) коэффициенты в соответствии с законом сохранения массы веществ.

2 . Составляется полное ионно-молекулярное уравнение . В молекулярной форме следует записывать малорастворимые и газообразные вещества, а также слабые электролиты (табл. 4.4, 4.5). Все эти вещества или не образуют в растворах ионов, или образуют их очень мало. В видеионов записывают сильные кислоты и основания, а также растворимые соли. Эти электролиты существуют в растворе в виде ионов, но не молекул.

3 . Составляется сокращённое ионно-молекулярное уравнение . Ионы, которые в ходе реакции не изменяются, сокращаются. Полученное уравнение показывает суть реакции.

Таблица 4.5

Растворимость солей кислот и оснований в воде

Примечание. Р ─ растворимое вещество, М ─ малорастворимое,

Н ─ нерастворимое, «─» ─ разлагается водой

В качестве примера решим вопрос о том, в каком случае произойдет химическое взаимодействие: если к раствору хлорида кальция добавить раствор нитрата натрия или сульфата натрия? Ответ подтвердите, написав ионно-молекулярные реакции.

Запишем молекулярные уравнения предполагаемых реакций, указав растворимость всех участников реакции (Р – растворимое,Н – нерастворимое). Все растворимые соли являются сильными электролитами.

CaCl 2 + 2NaNO 3 → Ca(NO 3) 2 + 2NaCl; CaCl 2 + Na 2 SO 4 → CaSO 4 ↓ + 2NaCl.

Р Р Р Р Р Р Н Р

В соответствии с правилами написания ионно-молекулярных уравнений сильные, растворимые электролиты запишем в виде ионов, аслабые или нерастворимые – в виде молекул.

Ca 2+ + 2Cl ‾ + 2Na + + 2NO 3 ‾ → Ca 2+ + 2NO 3 ‾ + 2Na + + 2Cl‾;

Ca 2+ + 2Cl ‾ + 2Na + + SO 4 2‾ → CaSO 4 ↓ + 2Na + + 2Cl ‾ .

В первом случае все ионы сокращаются, а во втором – сокращенное ионно-молекулярное уравнение имеет вид: Ca 2+ + SO 4 2‾ → CaSO 4 ↓, т.е. в данном случае имеет место химическое взаимодействие с образованием малорастворимого вещества. Данная реакция является практически необратимой , т.к. в обратном направлении, т.е. в сторону растворения осадка, она протекает в очень незначительной степени (рис. 4.6).

Рассмотрим реакции, приводящие к образованию слабого электролита и газа (рис. 4.7).

NH 4 Cl + KOH → NH 4 OH + KCl,

NH 4 + + Cl¯ + K + + OH¯ → NH 4 OH + K + + Cl¯,

NH 4 + + OH¯ → NH 4 OH.

Na 2 CO 3 + 2 HCl → 2 NaCl + H 2 CO 3 (H 2 O + CO 2 ),

2 Na + + CO 3 2 ¯ + 2 H + + 2 Cl → 2 Na + + 2 Cl¯ + H 2 O + CO 2 ,

2 H + + CO 3 2 ¯ → H 2 O + CO 2 .

Рис. 4.6 – Практически необратимая реакция двойного обмена с образованием осадка

Рис. 4.7 – Практически необратимые реакции двойного обмена

с образованием слабого электролита и газа

Если малорастворимые или малодиссоциирующие вещества есть и среди исходных веществ и среди продуктов реакции, то ионно-молекулярное равновесие смещается в сторону менее диссоциирующего или менее растворимого электролита.

СН 3 СООН + NaOH ↔ CH 3 COONa + H 2 O,

СН 3 СООН + Na + + OH¯ ↔ СН 3 СОО¯ +Na + + H 2 O,

СН 3 СООН + OH¯ ↔ СН 3 СОО¯ + H 2 O.

слабая кислота слабый электролит

Константа диссоциации уксусной кислоты равна около 10 –5 , а воды около 10 –16 , т.е. вода является более слабым электролитом и равновесие смещено в сторону образования продуктов реакции.

На смещении ионно-молекулярного равновесия основано растворение малорастворимого гидроксида магния при добавлении порциями раствора хлорида аммония:

Mg(OH) 2 + 2 NH 4 Cl ↔ MgCl 2 + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + + 2 Cl¯ ↔ Mg 2+ + 2 Cl¯ + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + ↔ Mg 2+ + 2 NH 4 OH.

Введение дополнительных порций иона NH 4 + смещает равновесие в сторону продуктов реакции.

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

Химические свойства кислот и оснований.

Химические свойства ОСНОВАНИЙ:

1. Действие на индикаторы: лакмус - синий, метилоранж - жёлтый, фенолфталеин - малиновый,
2. Основание + кислота = Соли + вода Примечание:реакция не идёт, если и кислота, и щёлочь слабые. NaOH + HCl = NaCl + H2O
3. Щёлочь + кислотный или амфотерный оксид = соли + вода
2NaOH + SiO2 = Na2SiO3 + H2O
4. Щёлочь + соли = (новое)основание + (новая) соль прим-е:исходные вещества должны быть в растворе, а хотя бы 1 из продуктов реакции выпасть в осадок или мало растворяться. Ba(OH)2 + Na2SO4 = BaSO4+ 2NaOH
5.Слабые основания при нагреве разлагаются: Cu(OH)2+Q=CuO + H2O
6.При нормальных условиях невозможно получить гидроксиды серебра и ртути, вместо них в реакции появляются вода и соответствующий оксид: AgNO3 + 2NaOH(p) = NaNO3+Ag2O+H2O

Химические свойства КИСЛОТ:
Взаимодействие с оксидами металлов с образованием соли и воды:
CaO + 2HCl(разб.) = CaCl2 + H2O
Взаимодействие с амфотерными оксидами с образованием соли и воды:
ZnO+2HNO3=ZnNO32+H2O
Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
NaOH + HCl(разб.) = NaCl + H2O
Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:
CuOH2+H2SO4=CuSO4+2H2O
Взаимодействие с солями, если выпадает осадок или выделяется газ:
Сильные кислоты вытесняют более слабые из их солей:
K3PO4+3HCl=3KCl+H3PO4
Na2CO3 + 2HCl(разб.) = 2NaCl + CO2 + H2O
Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты HNO3 любой концентрации и концентрированной серной кислоты H2SO4), если образующаяся соль растворима:
Mg + 2HCl(разб.) = MgCl2 + H2
С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
Mg + 2H2SO4 = MgSO4 + 2H2O + SO4
Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):
CH3COOH + C2H5OH = CH3COOC2H5 + H2O

Номенклатура и химические свойства солей.

Химические свойства СОЛЕЙ
Определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода):
BaCl2(тверд.) + H2SO4(конц.) = BaSO4↓ + 2HCl
NaHCO3 + HCl(разб.) = NaCl + CO2 + H2O
Na2SiO3 + 2HCl(разб.) = SiO2↓ + 2NaCl + H2O
Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:
Cu+HgCl2=CuCl2+Hg
Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции; в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:
CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl
NaCl(разб.) + AgNO3 = NaNO3 +AgCl↓
3Na2SO3 + 4H2SO4(разб.) + K2Cr2O7 = 3Na2SO4 + Cr2(SO4)3 + 4H2O + K2SO4
Некоторые соли разлагаются при нагревании:
CuCO3=CuO+CO2
NH4NO3 = N2O + 2H2O
NH4NO2 = N2 + 2H2O


Комплексные соединения: номенклатура, состав и химические свойства.

Ионообменные реакции с участием осадков и газов.

Молекулярные и молекулярно-ионные уравнения.

Это реакции, идущие в растворах между ионами. Сущность их выражается ионными уравнениями, которые записываются так:
сильные электролиты пишутся в виде ионов, а слабые электролиты, газы, осадки (твердые вещества) – в виде молекул, независимо от того в какой части уравнения они находятся: левой или правой.

1. AgNO 3 + HCl = AgCl↓ + HNO 3 – молекулярное уравнение;
Ag + + NO 3 – + H + + Cl – = AgCl↓ + H + + NO 3 – – ионное уравнение.

Если одинаковые ионы в обеих частях уравнения сократить, то получится краткое, или сокращенное, ионное уравнение:

Ag + + Cl – = AgCl↓.

CaCO 3 ↓ + 2H + + 2Cl – = Ca 2+ + Cl – + CO 2 + H 2 O,
CaCO 3 ↓ + 2H + = Ca 2+ + CO 2 + H 2 O.

4. CH 3 COOH + NH 4 OH = CH 3 COONH 4 + H 2 O,
CH 3 COOH + NH 4 OH = CH 3 COO – + NH 4 + +H 2 O,
CH 3 COOH и NH 4 OH – слабые электролиты.

5. CH 3 COONH 4 + NaOH = CH 3 COONa + NH 4 OH NH 3
H 2 O

CH 3 COO – +NH 4 + + Na + + OH – = CH 3 COO – + Na + + NH 3 + H 2 O,
CH 3 COO – + NH 4 + + OH – = CH3COO – + NH 3 + H 2 O.

Реакции в растворах электролитах идут практически до конца в сторону образования осадков, газов и слабых электролитов.

4.2) Молекулярное уравнение это обычное уравнение, которыми мы часто пользуемся на уроке.
Например: NaOH+HCl -> NaCl+H2O
CuO+H2SO4 -> CuSO4+H2O
H2SO4+2KOH -> K2SO4+2H2O и т.д
Ионное уравнение.
Некоторые вещества растворяются в воде, образуя при этом ионы. Эти вещества можно записать с помощью ионов. А малорастворимые или труднорастворимые оставляем в первоначальном виде. Это и есть ионное уравнение.
Например: 1) CaCl2+Na2CO3 -> NaCl+CaCO3-молекулярное уравнение
Ca+2Cl+2Na+CO3 -> Na+Cl+CaCO3-ионное уравнение
Cl и Na остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается:
Ca+CO3 -> CaCO3
2) NaOH+HCl -> NaCl+H2O-молекулярное уравнение
Na+OH+H+Cl -> Na+Cl+H2O-ионное уравнение
Na и Cl остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается?
OH+H -> H2O