Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n – общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Замечание. В основе определения вероятности события лежит некоторая совокупность условий . Если никаких ограничений, кроме условий при вычислении вероятности не налагается, то такие вероятности называются безусловными . Однако в ряде случаев приходится рассматривать вероятности событий при дополнительном условии, что произошло некоторое событие В.

Определение 1. Вероятность события А , вычисленная при условии, что имело место другое событие В , называется условной вероятностью события А и обозначается .

Замечание. Строго говоря, безусловные вероятности также являются условными, так как исходным моментом построенной теории было предположение о существовании некоторого неизменного комплекса условий .

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие А), если известно, что эта сумма есть чётное число (событие В)?

Решение. Построить пространство исходов, найти безусловную вероятность и условную вероятность .

Пример 2. Из колоды карт последовательно вынули 2 карты.

Найти :

а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта вышла вначале);

б) условную вероятность того, что вторая карта будет тузом, если первоначально был вынут туз.

Решение. а) Обозначим А - событие, состоящее в появлении туза на втором месте, В - событие, состоящее в появлении туза на первом месте. Событии А можно представить в виде . В силу несовместности событий и имеем . Общее число случаев вынуть из колоды в 36 карт 2 карты (выборка без повторений с учетом порядка!). Событию будут благоприятны исхода, а событию будут благоприятны исхода. Тогда .

б) Если первая вынутая карта - туз, то в колоде осталось 35 карт и среди них только 3 туза. Следовательно .

Общее решение задачи о нахождении условной вероятности для классического определения вероятности:

Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Если событий В произошло, то это означает, что наступило одно из событий , благоприятных событию В. При этом условии событию А благоприятствуют r и только r событий , благоприятных АВ. Таким образом . (1)

Аналогично, если , то . (1’)

Если В (соответственно, А) есть невозможное событие, то равенство (1) (соответственно (1’)) теряет смысл.

При каждое из равенств (1) и (1’) равносильно так называемой теореме умножения вероятностей.

Теорема умножения вероятностей. Вероятность произведения событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло: (2).


Доказательство теоремы умножения вероятностей для классической схемы случаев . Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Тогда , , а (из общего решения задачи о нахождении условной вероятности). Подставляя полученные значения вероятностей в формулу (2), получим тождество. Теорема доказана.

Замечание. Теорема умножения справедлива и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .

Следствие. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 3. В ящике находится 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в ящик. Найти вероятность того, что при первом испытании появится белый шар, при втором - черный и при третьем - синий.

Решение. Пусть событие А - при первом испытании появится белый шар, событие В - при втором испытании появится черный шар; событие С - при третьем испытании появится синий шар. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, то есть условная вероятность . Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором черный: . Так как события А, В и С совместны, то искомая вероятность

Определение 2. Событие А называется независимым от события В , если вероятность события А не зависит от того, произошло событие В или нет:

(наступление события В не меняет вероятности события А).

Определение 3. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Замечание 1. Если событие А независимо от события В, то в силу (2) имеет место равенство Отсюда следует, что , (4)

Т.е. событие В также независимо от А. Таким образом, при сделанном предположении свойство независимости событий взаимно.

Замечание 2. Понятие независимости событий играет значительную роль в теории вероятностей и её приложениях. В практических вопросах для определения независимости событий редко обращаются к выполнению равенств (3) и (4). Обычно для этого пользуются интуитивными соображениями, основанными на опыте (пример с монетой и др.). Для независимых событий теорема умножения вероятностей имеет наиболее простой вид.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Замечание 3. Если независимость событий определить посредством равенства , то это определение верно всегда, в том числе и тогда, когда и .

Определение 4. События , , …, называются независимыми в совокупности , если для любого события из их числа и произвольных , , …, взаимно независимы.

Замечание 4. В силу замечания 3 это определение эквивалентно следующему.

Определение 4. При любых и .

Замечание 5. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.

Пример. Грани тетраэдра окрашены: 1-я - в красный цвет, 2-я - в зелёный, 3-я - в синий, 4-я - во все эти 4 цвета (АВС). Легко видеть, что вероятность того, что грань, на которую упадёт тетраэдр при бросании, имеет красный цвет, равна 0,5: граней 4, 2 из них имеют в окраске красный цвет. Тогда . Аналогично можно подсчитать, что

Таким образом, события А, В, С попарно независимы. Однако, если осуществились события В и С вместе, то и осуществилось событие А, т.е. . Следовательно, события А, В и С в совокупности зависимы.

Обобщение теоремы умножения вероятностей на случай произвольного конечного числа независимых событий: .

Пример 4. Вероятность того, что стрелок при одном выстреле попадет в мишень, равна . Стрелок произвел три выстрела. Найти вероятность того, что он попал три раза.

Решение. Пусть событие А - стрелок попал в мишень при первом выстреле, событие В - стрелок попал в мишень при втором выстреле; событие С - стрелок попал в мишень при третьем выстреле. Вероятности этих событий по условию равны между собой: . Так как вероятность попадания в цель при каждом из выстрелов не зависит от результата остальных выстрелов, то все три события независимы в совокупности, тогда .

Следствие. (Теорема о вероятности появления хотя бы одного из совокупности независимых событий). Вероятность появления хотя бы одного из совокупности независимых событий А А

Рассмотрим события A и B , связанные с одним и тем же опытом. Пусть из каких-то источников стало известно, что событие B наступило, но неизвестно, какой конкретно из элементарных исходов, составляющих событие B , произошел. Что можно сказать в этом случае о вероятности события A ?

Вероятность события A , вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A|B) .

Условную вероятность P(A|B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение N AB исходов, благоприятствующих совместному осуществлению событий A и B , к числу N B исходов, благоприятствующих событию B , то есть

Если поделить числитель и знаменатель этого выражения на общее число N элементарных исходов, то получим

Определение . Условной вероятностью события A при условии наступления события B называют отношение вероятности пересечения событий A и B к вероятности события B :

При этом предполагают, что P(B) ≠ 0 .

Теорема . Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A) .

Смысл этой теоремы заключается в том, что условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω 1 элементарных исходов, совпадающем с событием B .

Пример . Из урны, в которой a=7 белых и b=3 черных шаров, наугад без возвращения извлекают два шара. Пусть событие A 1 состоит в том, что первый извлеченный шар является белым, а A 2 - белым является второй шар. Требуется найти P(A 2 |A 1) .

Способ 1. . По определению условной вероятности

Способ 2. . Перейдем к новому пространству элементарных исходов Ω 1 . Так как событие A 1 произошло, то это означает, что в новом пространстве элементарных исходов всего равновозможных исходов N Ω 1 =a+b-1=9 , а событию A 2 благоприятствует при этом N A 2 =a-1=6 исходов. Следовательно,

Теорема [умножения вероятностей] . Пусть событие A=A 1 A 2 …A n и P(A)>0 . Тогда справедливо равенство:

P(A) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) … P(A n |A 1 A 2 …A n-1) .

Замечание . Из свойства коммутативности пересечения можно писать

P(A 1 A 2) = P(A 1) P(A 2 |A 1)

P(A 1 A 2) = P(A 2) P(A 1 |A 2) .

Пример . На 7 карточках написаны буквы, образующие слово «СОЛОВЕЙ». Карточки перемешивают и из них наугад последовательно извлекают и выкладывают слева направо три карточки. Найти вероятность того, что получится слово «ВОЛ» (событие A ).

Пусть событие A 1 - на первой карточке написана буква «В», A 2 - на второй карточке написана буква «О», A 2 - на третьей карточке - буква «Л». Тогда событие A - пересечение событий A 1 , A 2 , A 3 . Следовательно,

P(A) = P(A 1 A 2 A 3) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) .

P(A 1)=1/7 ; если событие A 1 произошло, то на оставшихся 6 карточках «О» встречается два раза, значит P(A 2 |A 1)=2/6=1/3 . Аналогично, P(A 3 |A 1)=2/6=1/3 . Следовательно,

Определение . События A и B , имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B , то есть

P(A|B) = P(A) или P(B|A) = P(B) ,

в противном случае события A и B называют зависимыми.

Теорема . События A и B , имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

P(AB) = P(A) P(B) .

Таким образом, можно дать эквивалентное определение:

Определение . События A и B называют независимыми, если P(AB) = P(A) P(B) .

Пример . Из колоды карт, содержащей n=36 карт, наугад извлекают одну карту. Обозначим через A событие, соответствующее тому, что извлеченная карта будет пиковой, а B - событие, соответствующее появлению «дамы». Определим являются ли зависимыми события A и B .

P(A)=9/36=1/4 , P(B)=4/36=19 , P(AB)=1/36 , . Следовательно, события A и B независимы. Аналогично, .

Лекция 4

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень маленькую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Все зависит от конкретной задачи. Если вероятность нераскрытия парашюта 0,01, то такой парашют применять нельзя. Если электричка опоздает с вероятностью 0,01 то можно быть уверенным что она прибудет вовремя.

Достаточно малую вероятность, при которой в данной задаче событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости от 0,01 до 0,05.

Если случайное событие имеет вероятность очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит.

Условная вероятность

Произведением двух событий A и B называют событие АВ, состоящее в совместном появлении (совме­щении) этих событий. Например, если A - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событ ий. Например, если A , B , C - появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то ABC - выпадение «герба» во всех трех испытаниях.

Во введении случайное событие определено как событие, которое при осуществлении совокупности усло­вий S может произойти или не произойти.

Если при вы­числении вероятности события никаких других ограни­чений, кроме условий S, не налагается, то такую вероят­ность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной.

Например, часто вычисляют вероятность собы­тия B при дополнительном условии, что произошло со­бытие A . Безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.

Условной вероятностью Р A (В) или называют вероятность события B, вычисленную в предположении, что событие A уже наступило

Условная вероятность вычисляется по формуле

Эту формулу можно доказать исходя из классического определения вероятности.

Пример 3. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероят­ность появления белого шара при втором испытании (событие В ), если при первом испытании был извлечен черный шар (событие А ).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность Р А (В ) = 3/5.

Этот же результат можно получить по формуле

Р A (В ) =P (АВ )/P (А) (P (А ) > 0).

Действительно, вероятность появления белого шара при первом ис­пытании


P (A ) = 3/6 =1/2.

Найдем вероятность P (АВ ) того, что в первом испытании по­явится черный шар, а во втором - белый по формуле (3.1). Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений = 6 5 = 30. Из этого числа исходов событию АВ благоприятствуют 3 3=9 исходов. Следовательно, P (АВ ) =9/30 = 3/10.

Условная вероятность P А (В ) =P (АВ )/Р (А ) = (3/10)/(1/2) = 3/5. Получен прежний результат.