Азот - это всем известный химический элемент, который обозначается буквой N. Этот элемент, пожалуй, основа неорганической химии, его начинают подробно изучать еще в 8 классе. В данной статье мы рассмотрим данный химический элемент, а также его свойства и типы.

История открытия химического элемента

Азот - это элемент, который впервые был представлен знаменитым французским химиком Антуаном Лавуазье. Но за звание первооткрывателя азота борются многие ученые, среди них и Генри Кавендиш, Карл Шееле, Даниэль Резерфорд.

В результате опыта первым выделил химический элемент, но так и не понял, что он получил простое вещество. О своем опыте он сообщил который тоже проделывал ряд исследований. Вероятно, Пристли тоже удалось выделить этот элемент, но ученый не смог понять, что именно он получил, поэтому не заслужил звание первооткрывателя. Карл Шееле одновременно с ними проводил те же исследования, но не пришел к нужному выводу.

В том же году Даниэль Резерфорд сумел не только получить азот, но и описать его, опубликовать диссертацию и указать основные химические свойства элемента. Но даже Резерфорд так до конца и не понял, что он получил. Однако именно его считают первооткрывателем, потому что он был ближе всех к разгадке.

Происхождение названия азота

С греческого "азот" переводится как "безжизненный". Именно Лавуазье трудился над правилами номенклатуры и решил так назвать элемент. В 18 веке про этот элемент было известно лишь то, что он не поддерживает ни ни дыхания. Поэтому данное название приняли.

В латинском языке азот называется "нитрогениум", что в перевод означает "рождающий селитру". Из латинского языка и появилось обозначение азота - буква N. Но само название во многих странах не прижилось.

Распространенность элемента

Азот - это, пожалуй, один из самых распространенных элементов на нашей планете, он занимает четвертое место по распространенности. Элемент также найден в солнечной атмосфере, на планетах Уран и Нептун. Из азота состоят атмосферы Титана, Плутона и Тритона. Помимо этого, атмосфера Земли состоит на 78-79 процентов из этого химического элемента.

Азот играет важную биологическую роль, ведь он необходим для существования растений и животных. Даже тело человека содержит от 2 до 3 процентов этого химического элемента. Входит в состав хлорофилла, аминокислот, белков, нуклеиновых кислот.

Жидкий азот

Жидкий азот - это бесцветная прозрачная жидкость, является одним из агрегатных состояний химического азот широко используется в промышленности, строительстве и медицине. Он используется при заморозке органических материалов, охлаждения техники, а в медицине для удаления бородавок (эстетическая медицина).

Жидкий азот не токсичен, а также не взрывоопасен.

Молекулярный азот

Молекулярный азот - это элемент, который содержится в атмосфере нашей планеты и образует большую ее часть. Формула молекулярного азота - N 2 . Такой азот вступает в реакции с другими химическими элементами или веществами только при очень высокой температуре.

Физические свойства

При нормальных условиях химический элемент азот - который не имеет запаха, цвета, а также практически не растворим в воде. Азот жидкий по своей консистенции напоминает воду, такой же прозрачный и бесцветный. У азота есть еще одно агрегатное состояние, при температуре ниже -210 градусов он превращается в твердое тело, образует много больших белоснежных кристаллов. Поглощает кислород из воздуха.

Химические свойства

Азот относится к группе неметаллов и перенимает свойства у других химических элементов из этой группы. Как правило, неметаллы не являются хорошими проводниками электричества. Азот образует различные оксиды, например NO (моноокисид). NO или окись азота является мышечным релаксантом (вещество, которое значительно расслабляет мускулатуру и при этом не оказывает никакого вреда и иных влияний на организм человека). Оксиды, где содержится больше атомов азота, например N 2 O - это веселящий газ, чуть-чуть сладковатый на вкус, который используется в медицине как анестезирующее средство. Однако уже оксид NO 2 не имеет никакого отношения к первым двум, ведь это довольно вредный выхлопной газ, который содержится в выхлопах автомобилей и серьезно загрязняет атмосферу.

Азотная кислота, которую образуют атомы водорода, азота и три атома кислорода, является сильной кислотой. Ее широко используют в производстве удобрений, в ювелирном деле, органическом синтезе, военной промышленности (производство взрывчатых веществ, и синтеза отравляющих веществ), производстве красителей, лекарств и др. Азотная кислота очень вредна для организма человека, на коже оставляет язвы и химические ожоги.

Люди ошибочно полагают, что углекислый газ - это азот. На самом деле, по своим химическим свойствам элемент реагирует лишь с небольшим количеством элементов при нормальных условиях. А углекислый газ - это оксид углерода.

Применение химического элемента

Азот в жидком состоянии применяют в медицине для лечения холодом (криотерапии), а также в кулинарии как хладагент.

Этот элемент также нашел широкое применение в промышленности. Азот - это газ, который взрыво- и пожаробезопасен. Помимо этого, он препятствует гниению и окислению. Сейчас азот используют в шахтах с целью создания взрывобезопасной среды. Газообразный азот применяют в нефтехимии.

В химической промышленности без азота обойтись очень нелегко. Его используют для синтеза различных веществ и соединений, например некоторых удобрений, аммиака, взрывчатых веществ, красителей. Сейчас большое количество азота используют для синтеза аммиака.

В пищевой промышленности это вещество зарегистрировано как пищевая добавка.

Смесь или чистое вещество?

Даже ученые первой половины 18 века, которым удалось выделить химический элемент, думали, что азот - это смесь. Но существует большая разница между этими понятиями.

Имеет целый комплекс постоянных свойств, таких как состав, физические и химические свойства. А смесь - это соединение, в которое входит два или больше химических элемента.

Сейчас мы знаем, что азот - это чистое вещество, так как он является химическим элементом.

При изучении химии очень важно понять, что азот является основой всей химии. Он образует различные соединения, которые всем нам встречаются, это и веселящий газ, и бурый газ, и аммиак, и азотная кислота. Недаром химия в школе начинается именно с изучения такого химического элемента, как азот.

В 1777 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался осадок, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент) и, как всегда, не спешил с публикацией результатов своих трудов. В этом же году Кавендиш сообщил о своем опыте Джозефу Пристли.

Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным - не кислород удалялся из газовой смеси, а, наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.

Одновременно похожие эксперименты с тем же результатом проводил и Карл Шееле.

Открытие азота приписывают ученику замечательного шотландского ученого Джозефа Блэка Даниэлю Резерфорду, который в 1772 году опубликовал магистерскую диссертацию «О так называемом фиксируемом и мефитическом воздухе», где указал основные свойства азота. Блэк прославился своими опытами с «фиксируемым воздухом» - углекислым газом. Он обнаружил, что после фиксирования углекислоты (связывания её со щёлочью) остаётся ещё какой-то «нефиксируемый воздух», который был назван «мефитическим» - испорченным - за то, что не поддерживал горения и непригоден для дыхания. Исследование этого «воздуха» Блэк и предложил Резерфорду в качестве диссертационной работы.

В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новые химические элементы - инертные газы). Однако и Резерфорд и все эти выдающиеся учёные имели весьма смутное представление о природе открытого ими вещества. Они были убеждёнными сторонниками теории флогистона и связывали свойства «мефитического воздуха» с этой мнимой субстанцией. Только Лавуазье, ведя наступление на флогистон, убедился сам и убедил других, что газ, который он назвал «безжизненным», - простое вещество, как и кислород. Таким образом, чётко определить первооткрывателя азота невозможно.

Азот - химический элемент, который известен каждому. Его обозначают буквой N. Он, можно сказать, основа неорганической химии, и поэтому его начинают изучать еще в восьмом классе. В этой статье мы подробно рассмотрим азот, а также его характеристики и свойства.

История открытия элемента

Такие соединения, как аммиак, селитра, азотная кислота, были известны и применялись на практике задолго до получения чистого азота в свободном состоянии.


Во время эксперимента, проведенного в 1772 году, Даниель Резерфорд сжигал фосфор и прочие вещества в колоколе из стекла. Он выяснил, что газ, остающийся после сгорания соединений, не поддерживает горения и дыхания, и назвал его «удушливым воздухом».

В 1787 году Антуан Лавуазье установил, что газы, входящие в состав обычного воздуха, - это простые химические элементы, и предложил название «Азот». Чуть позже (в 1784 г.) физик Генри Кавендиш доказал, что это вещество входит в состав селитры (группы нитратов). Отсюда происходит латинское название азота (от позднелатинского nitrum и греческого gennao), предложенное Ж. А. Шапталем в 1790 году.

К началу XIX века учеными были выяснены химическая инертность элемента в свободном состоянии и его исключительная роль в соединениях с другими веществами. С этого момента «связывание» азота воздуха стало важнейшей технической проблемой химии.

Физические свойства


Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления - -209,86 °С, кипения - -195,8 °С. Азот с трудом сжижается. Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко - 3,39 Мн/м². Плотность в жидком состоянии - 808 кг/м³. В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t - 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.


При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли - нитраты и нитриты. Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак). Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота - малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера. Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN. При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии. Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе - аминокислот, аминов, нитросоединений и прочих.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Область применения

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ - в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.


Это вещество является одним из основных биогенных элементов и входит в состав важнейших элементов живых клеток - нуклеиновых кислот и белков. Однако количество азота в живых организмах невелико (примерно 1–3 % на сухую массу). Имеющийся в атмосфере молекулярный материал усваивают лишь сине-зеленые водоросли и некоторые микроорганизмы.

Довольно большие запасы этого вещества сосредоточены в почве в виде различных минеральных (нитраты, аммонийные соли) и органических соединений (в составе нуклеиновых кислот, белков и продуктов их распада, включая еще не полностью разложившиеся остатки флоры и фауны).

Растения отлично усваивают азот из грунта в виде органических и неорганических соединений. В природных условиях большое значение имеют особые почвенные микроорганизмы (аммонификаторы), которые способны минерализировать органический N почвы до солей аммония.

Нитратный азот грунта образуется в процессе жизнедеятельности нитрифицирующих бактерий, открытых С. Виноградским в 1890 году. Они окисляют аммонийные соли и аммиак до нитратов. Часть усвояемого флорой и фауной вещества теряется из-за воздействия денитрифицирующих бактерий.

Микроорганизмы и растения отлично усваивают как нитратный, так и аммонийный N. Они активно превращают неорганический материал в различные органические соединения - аминокислоты и амиды (глутамин и аспарагин). Последние входят в состав многих белков микроорганизмов, растений и животных. Синтез аспарагина и глутамина путем амидирования (ферментативного) аспарагиновой и глутаминовой кислот осуществляется многими представителями флоры и фауны.

Производство аминокислот происходит при помощи восстановительного аминирования ряда кетокислот и альдегидокислот, возникающих путем ферментативного переаминирования, а также в результате окисления различных углеводов. Конечными продуктами усвоения аммиака (NH₃) растениями и микроорганизмами являются белки, которые входят в состав ядра клеток, протоплазмы, а также откладываются в виде так называемых запасных белков.

Человек и большинство животных могут синтезировать аминокислоты лишь в довольно ограниченной мере. Они не способны производить восемь незаменимых соединений (лизин, валин, фенилаланин, триптофан, изолейцин, лейцин, метионин, треонин), и потому для них главным источником азота являются потребляемые с пищей белки, то есть, в конечном счете, - собственные белки микроорганизмов и растений.

Всем известно: инертен. Часто мы сетуем за это на элемент № 7, что естественно: слишком дорогой ценой приходится расплачиваться за его относительную инертность, слишком много энергии, сил и средств приходится тратить на его превращение в жизненно необходимые соединения. Но, с другой стороны, не будь так инертен, в атмосфере произошли бы реакции азота с кислородом, и жизнь на нашей планете в тех формах, в которых она существует, стала бы невозможной. Растения, животные, мы с вами буквально захлебывались бы в потоках неприемлемых жизнью окислов и кислот. И «при всем при том» именно в и азотную кислоту мы стремимся превратить возможно большую часть атмосферного азота. Это один из парадоксов элемента № 7. (Здесь автор рискует быть обвиненным в тривиальности, ибо парадоксальность азота, вернее его свойств, стала притчей. И все же…)

Элемент необыкновенный. Порою кажется, что чем больше мы о нем узнаем, тем непонятнее он становится. Противоречивость свойств элемента № 7 отразилась даже в его названии, ибо ввела в заблуждение даже такого блистательного химика, как Антуан Лоран . Это предложил назвать азот азотом после того, как не первым и не последним получил и исследовал не поддерживающую дыхания и горения часть воздуха. Согласно , «азот» означает «безжизненный», и слово это произведено от греческого «а» - отрицание и «зоэ» - жизнь

Термин «азот» бытовал еще в лексиконе алхимиков, откуда и заимствовал его французский ученый. Означал он некое «философское начало», своего рода кабалистическое заклинание. Знатоки утверждают, что ключом к расшифровке слова «азот» служит заключительная фраза из Апокалипсиса: «Я есть альфа и омега, начало и конец первый и последний…» В средние века особо почитались три языка: латинский, греческий и древнееврейский. И слово т» алхимики составили из первой буквы «а» (а, альфа, алеф) и последних букв: «зет», «омега» и «тов» этих трех алфавитов. Таким образом, это таинственное синтетическое слово означало «начало и конец всех начал».

Современник и соотечественник Лавуазье Ж. Шапталь, не мудрствуя лукаво, предложил назвать элемент № 7 гибридным латино-греческим именем «нитрогениум», что значит «селитру рождающий». Селитры - азотнокислые соли, известные с древнейших времен. (О них речь впереди.) Надо сказать, что термин «азот» укоренился только в русском и французском языках. По-английски элемент № 7 - «Nitrogen», по-немецки - «Stickstoff» (удушающее вещество). Химический же символ N -дань шапталевскому нитрогениуму.

Кем открыт азот

Открытие азота приписывают ученику замечательного шотландского ученого Джозефа Блэка Даниэлю Резерфорду, который в 1772 г. опубликовал диссертацию «О так называемом фиксируемом и мефитическом воздухе». Блэк прославился своими опытами с «фиксируемым воздухом» - углекислым газом. Он обнаружил, что после фиксирования Углекислоты (связывания ее щелочью) остается еще какой-то «нефиксируемый воздух», который был назван «мефитическим» - испорченным - за , что не поддерживал горения и дыхания. Исследование этого «воздуха» Блэк и предложил Резерфорду в качестве диссертационной работы.

Примерно в же время азот был получен К. Шееле, Дж. Пристли, Г, Капеидишем, причем последний» как следовало из его лабораторных записей, изучал этот газ раньше Релерфорда, но, как всегда, не спешил с публикацией результатов своих трудов. Однако все эти выдающиеся ученые имели весьма смутное представление о природе открытого ими . Они были убежденными сторонниками теории флогистона и связывали свойства «мефитического воздуха» с этой мнимой субстанцией. Только Лавуазье, ведя наступление на флогистон, убедился сам и убедил других, что газ, который он назвал «безжизненным»,- простое вещество, как и .

Вселенский катализатор

Можно лишь догадываться, что означает «начало и конец всех начал» в алхимическом «азоте». Но об одном из «начал», связанных с элементом № 7, можно говорить всерьез. Азот и жизнь - понятия неотделимые. По крайней мере всякий раз, когда биологи, химики, астрофизики пытаются постичь «начало начал» жизни, непременно сталкиваются с азотом.

Атомы земных химических элементов рождены в недрах звезд. Именно оттуда, от ночных светил и дневного светила, начинаются истоки нашей земной жизни. Это обстоятельство и имел в виду английский астрофизик У. Фаулер, говоря, что «все мы… являемся частичкой звездного праха»…

Звездный «прах» азота возникает в сложнейшей цепи термоядерных процессов, начальная стадия которых - превращение водорода в . Это многостадийная реакция, идущая, как предполагают, двумя путями. Один из них, получивший название углеродно-азотного цикла, имеет самое непосредственное отношение к элементу № 7. Этот цикл начинается, когда в звездном веществе, помимо ядер водорода - протонов, уже есть и . Ядро углерода-12, присоединив еще один протон, превращается в ядро нестабильного азота-13:

¹² C + ¹ H → ¹³ N + γ

Но, испустив позитрон, азот снова становится углеродом образуется более тяжелый изотоп ¹³ С:

Такое ядро, приняв лишний протон, превращается в ядро самого распространенного в земной атмосфере изотопа — ¹⁴ N.

Увы, лишь часть этого азота отправляется в путешествие по Вселенной. Под действием протонов азот-14 превращается в кислород-15, а тот, в свою очередь, испустив позитрон и гамма-квант, превращается в другой земной изотоп азота - ¹⁵ N:

Земной азот-15 стабилен, но и он в недрах звезды подвержен ядерному распаду; после того, как ядро ¹⁵ N примет еще один протон, произойдет не только образование кислорода ¹⁶ O, но и другая ядерная реакция:

В этой цепи превращений азот - один из промежуточных продуктов. Известный английский астрофизик Р. Дж. Тейлер пишет: « ¹⁴ N - изотоп, который нелегко построить. В углеродно-азотном цикле образуется азот, и, хотя впоследствии он снова превращается в , все же если процесс протекает стационарно, то азота в веществе оказывается больше, чем углерода. Это, по-видимому, основной источник ¹⁴ N»…

В умеренно сложном углеродно-азотном цикле прослеживаются любопытные закономерности.

Азот - элемент главной подгруппы пятой группы второго периода периодической системы химических элементов, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот (CAS-номер: 7727-37-9) - достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

История открытия.

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным - не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.

Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле. В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.

В дальнейшем азот был изучен Генри Кавендишем (интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент - инертный газ аргон)